38=-16t^2+48+2

Simple and best practice solution for 38=-16t^2+48+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 38=-16t^2+48+2 equation:



38=-16t^2+48+2
We move all terms to the left:
38-(-16t^2+48+2)=0
We get rid of parentheses
16t^2-48-2+38=0
We add all the numbers together, and all the variables
16t^2-12=0
a = 16; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·16·(-12)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*16}=\frac{0-16\sqrt{3}}{32} =-\frac{16\sqrt{3}}{32} =-\frac{\sqrt{3}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*16}=\frac{0+16\sqrt{3}}{32} =\frac{16\sqrt{3}}{32} =\frac{\sqrt{3}}{2} $

See similar equations:

| -7(6x-1)=-15 | | 40=5(c-84) | | 2(3x-6)=25+2x-1 | | 3x-20+140=180 | | -2(5p+1)=-38-4p | | t-3=66 | | –8+2r=–4 | | -x-4x=-4x-3 | | -7+x=-189 | | x/6+10=-16 | | 2(3x-6)=25+2x | | 33+7y=13 | | b-7.4=8 | | 180=1/2x | | 3(11)+7y=13 | | 16x^2/144=144/144 | | 3x-20+40+100=180 | | 4n-7+n+12+11n=216 | | 3x-11/2=-3x/2+25/2 | | –21=–3d | | x4=-24 | | 16x^2/144=0 | | 36x(-48)= | | u-6.24=7.7 | | 1=a3 | | 5-2k=-11 | | 84=6(y+2) | | 3/7-37m=33 | | h+1/2=61 | | 34g+6=2(6g+9) | | k+8=165 | | 1/1p=6 |

Equations solver categories